Loading...
1994-07-28 Plat Review .. MEYER-ROHLIN, INC. ENGINEERS-LAND SURVEYORS 1111 Hwy. 25 N., Buttalo, Minn. 55313 Phone 612 - 682-1781 July 28, 1994 Mr. Dale Powers City of Albertville PO Box 131 Albertville, MN 55301 RE: psyk/Marx Drainage Dear Dale: In an attempt to get City Council approval of the psyk 6th Addition plat, we are submitting the following for your review: 1. Exhibit "A" is a composite copy of the topography flown in November, 1981, and the field surveyed topography by Meyer- Rohlin, Inc. in December, 1972. This would be the topography prior to any development work in the area and represents the pre-development drainage patterns. On this exhibit we have delineated by extra heavy lines the drainage areas that originally surface drained through the psyk property to the wetlands on the Marx property. The area outlined in yellow is that portion of the above drainage area that is contained in the psyk 5th and 6th Additions and potential future psyk additions to the west, and approximates 26.37 acres. Runoff calculations based on the S.C.S. TR55 method, for the psyk portion only, are enclosed based on the original soi 1 and farming conditions (row crops) and summarized as follows: storm Event 1 year 2 year 5 year 10 year Peak Runoff 11.29 cfs 15.99 cfs 25.8 cfs 33.8 cfs Total Volume 1.78 ac. ft. 2.42 ac. ft. 3.78 ac. ft. 4.86 ac. ft. 2. With the design of the psyk 5th and 6th Additions, and potential future additions to the west, a drain-dry detention pond is being utilized outletting to the south into a sedimentation pond before entering the large psyk area wetlands. Exhibit "B" indicates this detention pond, outlet- ting to the south and the greatly reduced area which will continue draining to the northeast. The area draining to the northeast following the original drainage pattern from the designed 5th, 6th and future additions to the west has been reduced from the above 26.37 acres to 7.9 acres. The runoff Thore P. Meyer, Professional Engineer Robert Rohlin, Licensed Land Surveyor calculations for this 7.9 acre parcel, based on the SCS-TR 55 Method, are enclosed, based on the residential, 1/3 acre sites and are summarized as follows: storm Event 2 year 10 yr 50 year Peak Runoff 4.97 cfs 12.7 cfs 20.3 cfs 3. The detention pond design is based on controlling the peak runoffs from the major storm and releasing the storm water at a rate equal to or less than the runoff from the pre- development drainage pattern. In this case, wi th a culvert designed to restrict the outlet flow from the detention pond to a rate of 15.99 cfs. (Peak flow from the 26.37 acres for the 2 year storm event based on pre-development conditions). As per the calculation sheets, for the 100-year storm event this would require a detention pond of 0.43 acre/feet storage capaci ty. By using the northeasterly lot of the psyk 6th Addi tion as a temporary detention pond, approximately 0.55 acre/feet of storage is provided. (Bottom elevation of 953.3 and an overflow berm of 955.3). Other combinations of outfall rate and detention pond storage can be used; i . e. lower outlet flow from the pond with an overflow of the detention pond berm at a storm event less than 100 years. In any case, this is the natural flow from the Psyk and Marx property that is proposed to be controlled by a restricting culvert and a temporary detention pond. The delineation of the Marx wetland areas, certainly being needed before any develop- ment of the Marx property could begin, has no bearing upon the psyk 6th Addition. Mr. psyk has been held up on this project for months, while much time and effort has been spent attempting to work out an amiable agreement with Mr. Marx. The current proposal protects the Marx property to a much greater degree than existing and past conditions until such time that the Marx property would be developed. At that time the needed storm sewer systems would be installed on a pro-rata cost basis as has been discussed for the past few months. If you have any questions, please feel free to contact myself or Norman Gartner of our office. We trust that some positive action can be taken regarding the approval of the psyk 6th Addition at the next Albertville Council meeting. Sincerely, cc: Mike Couri Bob Robertson, RCM Doug PSrk File 94 20 1_~~ q-..._. ..~~. . .~\] .\J '2 I ,-~- ~~ ~ 10 I.. ,96(J'~"'1 ""?S9. ~'. \ ,....*' - ~- .-n0'" . \..------ -- _ I' ,. I \.te- " '.1'" .J...., "95;>.9 I \ " 1\ ' l '''....... ) -1 J : i5.16 I 9 10 r'\ 1 \ 1 \ 11C.At'('. 1 ' I ' 1 \ I I r I r , I I 1 r I l/ I I I I I I 1 I. p"" ~f No topography available Meyer-Hohlincrew lopograIJhy*Dcc., 1972 ~> '"~ '0 1,"'00 Exhibit A ORIGINAL TOPOGRAPHY FIOU(.IA.L "."5J,~ ... .l. -rr--r- . I ......"l. L. I 54 1/2 Street!\.' E. 'I~r-'~ ~ -~"1 ~ ! : ! . < 1__-1___ 1:; r <~=-' ~ :L : i !~_. I \ . " -r-- I I I 1 L- S':th ~'}'Ii.(l /,...... "",..., " , " - , \ /./' --- -- " " ....""',- -' Exhlbit B PROPOSED DEVELOPMENT {'J d? j /'" 1 ~ J '\.'~ ""'r , " ~ , t'-J '---' ~ -& \l --J -T cD -r- \Vorksheet 2: Runoff curve number and runoff ~ P. \) \ rOJect \.~...,~'/ If)", "'-, ' ~_- " _._,. - d._.'- ~:::>~_. Location ~ I. f\! "'~"'_ ,__- ;,~._ '<,.-I , ~,~~ ___L....., / ! :....._!_ ~?_ By i J;;/J. ----rI Checked Da te i~" 2 2 ~0 4 Ci rc Ie one: /"P;;;;;rl '.----~ \ Developed Date 1. Runoff curve number (CN) n I ( <2 r Q :z. -h 1'-: c' ; )0-~<v,"_,.,(;~t':'. 1/ ~? i' ""-;:;:::':0;/ /,~ 1\ _,~ I 'I i " ;' i~{; f!l:,'.- TV pc; - I) (} / f 11ft iZ FiE..lO j~fo -f}c::(_ (11'- Soil name Cover description CN 1./ Area Product and of hydrologic (cover type, treiitment, and C',j ~es CN x area hydrologic condition; I M -:r group N I I percent impervious; N N Omi2 C) unconnected/connected impervious M 0% ..0 co co (appendix A) area riltio) co 'rl 'M E-< >=.. >=.. /-t~, '1 f/CU '- I ~ t'f(\'(<::;"~t:.o O~) 1~ 1,05 11.1 Ht. w D<::..J ~ 1::"'0 '-V c.. \206 <;: . / r;-sL. Z. I '( ') ~2t! ! f-, '" j.. gl Iq.ZL ,,5 eo''"' , - GO ~ 12 , 'J),)W~C:.'> I2c <.U C ~o6 4,3 34g,~ I (6) ~-+. i20 VJ ~ P0Ji~ gl ~ VCU-I i),.; '-'Ok '" (0; ~ '2"'f S /.8 s,+. ~tJ-I' rC;ooo &'1 I~O, 2..- I 1/ Use only one CN source per 11 ne. Totals = z..C. S7 2-!~:;.{) CN (weighted) total product total area Zl!~ &-( . 2-/ Use CN a-) V.....~I 2. Runoff Frequency .............................. Storm t/l Storm 1/2 Storm i/3 I '2 S- /0 yr in 2.,3 2.1 5.~ t/./ in 0. g, J./(!) ;,7'2- 2.2/ Rainfall. P (24-hour) .................. Runoff) Q .............................. (Use P and eN with table 2-1, fig. 2-1. or eqs. 2-) and 2-4.) D.2 (21O.VI.TR.55, Second Ed., June 1986) \Vorksheet 3: Time of concentration (T c) or travel time (Tt) n Project r~';"\(. O""'J~LC."::,'hC.\ ,'\ I Lo cat ion }i-<__~; <!.o~'--l'1l1 :..- L- C I By -,-OIA. Da te fa. 2 2 . ~4, "TT---" Checked ______ Date Circle one:~ Developed Circle one: Tc Tt through subarea NOTES: Space for as ~any as two segments per flow type can be used for each worksheet. Include a ~p, schematic, or description of flow segments'f I Sheet flow (Applicable to Tc only) 1. Surface description (table 3-1) Segment ID ............. . 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L < 300 ft) .......... 4. Two-yr 24-hr rainfall, P2 .................. 5. Land slope, s .............................. ft/ft 0: 0.007 (nL)0.8 T 0 4 Compute Tt ...... hr t P 0.5 . 2 s 6. Shallow concentr3ted flow Segment ID 7. Surface .description (paved or unpaved) ..... .8. Flow length, L ............................. ft 9. Watercourse slope, s ....................... ft/ft 10. Average velocity, V (figure 3-1) ........... ft/s L 11. Tt m 3600 V Compute Tt ...... Channel flow Segment ID 12. Cross sectional flow area, a ft2 .............. . 13. Wetted perimeter, Pw....................... ft 14. a r ..- PI.' Hydraulic radius, Compute r ....... 15. Channel slope, s ........................... ft/ft 16. Manning's roughness coeff., n .............. 1 49 2/3 1/2 V.. . r s Compute V....... n ft/s 17. 18. Flow length, L ft . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 19. L 3600 V . . . . . . hr \.,Tatershed or subarea Tc or Tt (add Tt in steps 6,11, and 19) ........ 1+ l T .. t Compute Tt 20. / (21O-VI-TR.55, Second Ed., June 1986) J LfE/2.tJiJ1t. CUI-i GUlT: So {(..'> <",,<>( '/ .?v 1:1 h<'S ~O:i-S .. c!I' ., < LO ,0 ~t:;t, ft CJ.6&, 0.0G /50 300 2..{ '2-.1 in ,O'Z- ,03 ~'rz] I ,Ig .~ (!.ull \.;, I~ C;ud. )'''1(.$ u u " ( I!ou~ o:~ I&~ /500 ,- y .._ U)emfy/ (.oC!s) .@O2.'{~ ,0(.;2\' /,J~ 1~/6 (,t/;ll t 3/ ~,-------- hr ft =QQJ hr - fij D-3 \Vorksheet 4: Graphical Peak Discharge method Project C6.~\# \{ ..... \ l rL_ '.". \ j /"-=--,-,,,)',:"'-'"-; (_-::f~':\\" ~t~~, \'1"' \ Location j~\.""" F~.-::"::'J:~~~\j!. L L_ c7- ~-........ Circle one:~ Developed 1. Data: ~ ,O~rL Drainage area ....~q-P.. A = m Runoff curve number ... . eN = &, Time of concentration . . Tc = ,b-Z- Ra in fall distribution type = IF Pond and swamp areas spread II ~ /0 throughout watershed ..... . = 2. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Rainfall , P (2-i-hour) ................... 4. Initial abstraction, I................. a (Use C~ with table 4-1.) 5. Compute I Ip a .......................... .. 6. Unit peak discharge, q ................. u (Use T and I IP with exhibit 4-~ ) c a 7. Runoff, Q ............................... (From worksheet 2). 8. Pond (Use with and swamp adjustment factor, F p percent pond and swamp area table 4-2. Factor is 1.0 for percent pond and swamp area.) zero 9. Peak discharge, q ...................... p (Where q = q A QF ) P u m p By --rD/i, ~ Checked mi2 (acres/640) (From worksheet 2) hr (From worksheet 3) cr, lA, II, III) Date {.,;., ;2 2 0;i4 Date percent of A (2.9 acres or mi2 covered) m ---;- Storm III yr 2- Z,1 in in I I I in I ,t/b9 I t 11 ~71 1Cf() I /. 10 I csmlin ((1JAx) L1~1 Storm #2 Storm #3 s- S.6 I/~q I //510 I S-6~ I t1Z I nz. I 10 4, i 2.3 I t/01 I, :/&7 //44 112'0-$1 5]6 I 410 2.2-1 I (j~ &- J ,17- I t 17- cfs I J ::;ot1 I 2";: 71 I oS 5.7(, I n.2.9 -r~ 1?ul..16Fl=' J ." () )( 4m x0:S. ~~ (~c.~) 2.4'2 fL 0~~ f) D-4 (210-VI.TR-55, Second Ed., June 1986) :So '7 ~ 4-81.. /,1& Project Location Circle one: \Vorksheet 2: Runoff curve number and runoff c---' ........,{.., , \ ":::) !",,.I'C,. ~ / z.".."" ! . ,j~ o:--,:::_',~" ~""( r- ,'_~_ /j~_ p::::...,~- I -:\~! :'-__l",._~t:; ,..~~->~-~-"'~ present<Deve1op~ "'------.-- 1. Runoff curve number (CN) Soil name and hydrologic group (appendix A) 4IOJ-(T;' C ~-.J ( 6'\ ,,~. .J Cover description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area p.tio) Dc=:' c i . 1'-.:-;; I T) ;;;:: '---"";- ! ;~-~ if ~ f\e-r:zr l~<; l! Use only one CN source per line. CN (weighted) 2. Runoff Frequency Rainfall, total product total area . ..... ...... .... ... ........... yr P (24-hour) .................. in Runoff) Q .............................. in (Use P and CN with table 2-1, fig. 2-1, or eqs. 2-3 and 2-4.) D-2 By '-iT ~/./ -rr- II Checked ~'22 ";1 Date Date CN ~/ Area Product of hi ~es CN x area I M "" N I I N N Omi2 C! M 0% ..0 co co ~ 'rl .rl E-< " ~ ~ 12 1q . I Totals = 1.q Use CN I 1z.. I Storm {/l Storm 112 Storm 113 100 i?CJ 2~ 6: g<; r f{1 S'. '2- '> 2.g~ 2-. t{ 0 (11 (210.VI-TR-55, Second Ed., June 1986) \Vorksheet 3: Time of concentration (Tc) or travel time (Tt) ,~ \ ~s "" '" ",_ /_-=" -:.:: /"" :-, i _...._-~:-/.~7~.:- ',-: . ...,; ,._ I :\ " -;: r-:- ;~ ....:., By -:J-'C: _~ ) i Date ! " C9 " ':~i. 2-... <~ ~' Project Location Checked Date Circle one: Present Developed Circle one: Tc Tt through subarea NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a wap, schematic, or description of flow segments. Sheet flow (Applicable to Tc only) Segr.:ent ID 1. Surface description (table 3-1) ........... . 2. Manning's roughness coeff., n (table 3-1) .. 3. Flow length, L (total L < 300 ft) .......... ft 4. Two-yr 24-hr rainfall, P2 .................. in 5. Land slope, s .............................. 0.007 (nL)0.8 P 0.5 0.4 2 s ftlft 6. T = t Compute Tt ...... hr I + I =0 Shallow concentrated flow Segment ID 7. Surface .description (paved or unpaved) ..... .8. Flow length, L ... ........................... ft 9. Watercourse slope, s ....................... ftlft 10. Average velocity, V (figure 3-1) ........... ft/s L 11. Tt = 3600 V Compute Tt ...... hr 1+1 =0 Channel flow 12. Cross sectional flow area, a .t............ . Segment ID ft2 13. Wetted perimeter, Pw ....................... ft 14. Hydraulic radius, a r =- Pw Compute r ....... ft 15. Channel slope, s ........................... ftlft 16. Hanning's roughness coeff., n .............. 1 49 2/3 1/2 V = . r s Compute V....... n ftls 17. 18. Flow length, L ............................. ft 19. Tt = L 3600 V Compute Tt ... ... hr I + I h:L~/1 20. Watershed or subarea Tc or \ (add \ in steps 6, 11, and 19) .. ...... I (210-VI-TR-S5, Second Ed., June 1986) D-3 \Vorksheet 4: Graphical Peak Discharge method Project () , j/Q C:)V<<, .-' .' r- '" I i '\ !~'D\ ':~ C' ~~.,_/ , I / "'-..!l (~ Location .1\ \ ~ ---:,_ ~>\. . ~. (' ' Ie' _1_ , .' ~;- iI" .\ ''.I -- '- "-- Circle one: Present~~e;el~p~ '--- _:..--- 1. Data: (, ~ Y;'J. 0 A . " . . 'f.$. . . . rn ,DI1.~J 0?- 0,2-'/ -IL Drainage area Runoff curve number .... eN = Time of concentration .. Tc = Rainfall distribution type = Pond and swamp areas spread throughout ~~atershed ...... = By \ eli/_ ! ' Checked mi2 (acres/640) (From worksheet 2) hr (From worksheet 3) 0, lA, II, III) Date Da te - ..-.. .9-.;::::.." ~ percent of A (--- acres or mi2 covered) m - 2. Frequency . . . . t' . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Rainfall , P (24-hour) ................... 4. Initial abstraction, I ................. a (Use C~ with table 4-1.) 5. Compute I Ip a .................. .... ...... 6. Unit peak discharge, q ................. u (Use T and I IP with exhibit 4- 117 ) c a 7. Runoff, Q ......"."..."."."....."......"" (From worksheet 2). 8. Pond (Use with and swamp adjustment factor, F p percent pond and swamp area tahle 4-2. Factor is 1.0 for percent pond and swamp area.) zero 9. Peak discharge, q ...................... p (Where qp = quAmQFp) D-4 Storm fll Storm fl2 Storm 113 yr ) ()() sr..J [< 58's t,2') I' 4.7 in , in I ,11g I I ~,J~2qq I I toq<; I in I 2, g g I UQJ csm/in ,-;; r I ,iJ@7-- ~g,o 2- !-{ 0 I. u I /17 r I I ( (L,.. .;-,--1 I G,lsl I f.Qj7 I I ( u I cfs I U/.10 I CZo ,It-! I ( (".L(! I (210-VI-TR-55, Second Ed., June 1986) . . \Vorksheet 6a: Detention basin storage, peak outflow discharge (qo) known Project Loca tion Circle one: Present Developed By_ Date Checked Date -II~ :~-i:ILjqf:_ J: - j~t=[-I-I~I:- -~1. - .:~- = - --- :~[IT[~:~t~ ~ ~-ltffi. thrrJ:ITHtt - t' - -, /_-1: - -/- =1- = -- - _. :'- -c h '-1.' , = = iT_- - :OOFffilt' I I] ,: 'rn--t' : -_:- ~1"..----~r=.- +1:::-i-1-:1- :::=--.+tLJ I IT: IJII - - -I, - - - -,-I - , _. - T - -I- -T -t-- - r I TH~L '+ -t J ::: ,'-, Ft - 'II ij/-t-/-I i -+-1 - - iii- -H+m- I I I I '.1.1 - ,- : - - t -/ ~ ' - - - : - -t1- -{ - -tl=~Ltt.E=_Lj-ti.Ji I- ~th; t.Lml , .w.. I I -1 ' - - -rr T - ,H-d. ++ - - j I I! I - -1= lr-+ _I- -i~=rn~- _TJ=- I , - - - J t .TD-h- -j-- -LfTFir: 1- I I I I! I I I IT -1- - - - -1- = 1=,- fl i~+F 4t} h T :n -1-1-1-/- - U-/1: t ! I' II' 111:1" : ~tf~- - :[+f: ~f':t --'-~~ffl' f-t f-Hj~r+m '~.- . I 1'1 I -, 1':/. II I -I' '.j":. L/. r tj~t .-!~Llftf!:f:Fm. - I' I 1 ,I - j J - , 'j i ' -1-r -I-rft-+-Lri-JM-'-'l- I 1 i I 1'-1 LII I I -I,t - -. - :j- ~!:mJl.LH-H-i-J=trti I 'I II i I: I .' I 1 - - I,"j-r TthHlH-j--t+-H-h I :T~ CJ co r:l .u CIl ~ o c: o oM .u r:l > CJ r-l :'-l Detention basin storage 1. Da ta: _ 2 Drainage area ....... \n - Ic?ll.-;4..mi Rainfall distribution type (I, lA, II, III) rr- 2. Frequency...... yr I /00 1 3. Peak inflow dis- I 1 charge, qi .... cis 24.70 (From worksheet 4 or 5b) 01')C~t~(;~ ftZOIU. . 4. Peak outflow d1s- I 1 z. 'fi2 <;~I2M. charge, qo .... cis 1~1q E"Vt:~- OiZlC"iIIl.l'A1.,.. Cc.1.......\~,""t.l\A.'). 5. Compute qo ......../0.(.,,';(1 1 qi 1/ J Jj 2nd stage qo includes 1st stage qo. 6 . ~ s .........;...... /, '2-vS L r qo (Use -- with figure 6-1) qi 7. Runoff, Q ...... in 17,221 (From worksheet 2) I. J 1 8. Runoff volume, I I V r .......... ac-ft I ,(fa (Vr .. QAm53.33) 9. Storage volume, I ,/ 1 Vs .......... ae-ft 0../..13- V (V .. V (2.)) s r V r 10. Maximum stage, E I max (From plot) (21O-VI.TR.55, Second Ed., June 1986) D-7